Diet reveals links between morphology and foraging in a cryptic temperate reef fish
نویسندگان
چکیده
Predators select prey so as to maximize energy and minimize manipulation time. In order to reduce prey detection and handling time, individuals must actively select their foraging space (microhabitat) and populations exhibit morphologies that are best suited for capturing locally available prey. We explored how variation in diet correlates with habitat type, and how these factors influence key morphological structures (mouth gape, eye diameter, fin length, fin area, and pectoral fin ratio) in a common microcarnivorous cryptic reef fish species, the triplefin Helcogrammoides cunninghami. In a mensurative experiment carried out at six kelp-dominated sites, we observed considerable differences in diet along 400 km of the Chilean coast coincident with variation in habitat availability and prey distributions. Triplefins preferred a single prey type (bivalves or barnacles) at northern sites, coincident with a low diversity of foraging habitats. In contrast, southern sites presented varied and heterogeneous habitats, where triplefin diets were more diverse and included amphipods, decapods, and cumaceans. Allometry-corrected results indicated that some morphological structures were consistently correlated with different prey items. Specifically, large mouth gape was associated with the capture of highly mobile prey such as decapods, while small mouth gape was more associated with cumaceans and copepods. In contrast, triplefins that capture sessile prey such as hydroids tend to have larger eyes. Therefore, morphological structures co-vary with habitat selection and prey usage in this species. Our study shows how an abundant generalist reef fish exhibits variable feeding morphologies in response to the distribution of potential habitats and prey throughout its range.
منابع مشابه
Exploring the nature of ecological specialization in a coral reef fish community: morphology, diet and foraging microhabitat use.
Patterns of ecological specialization offer invaluable information about ecosystems. Yet, specialization is rarely quantified across several ecological niche axes and variables beyond the link between morphological and dietary specialization have received little attention. Here, we provide a quantitative evaluation of ecological specialization in a coral reef fish assemblage (f. Acanthuridae) a...
متن کاملFunctional versatility supports coral reef biodiversity.
We explore the role of specialization in supporting species coexistence in high-diversity ecosystems. Using a novel ordination-based method to quantify specialist and generalist feeding structures and diets we examined the relationship between morphology and diet in 120 wrasses and parrotfishes from the Great Barrier Reef. We find that wrasses, despite their morphological diversity, exhibit wea...
متن کاملHabitat-Specific Density and Diet of Rapidly Expanding Invasive Red Lionfish, Pterois volitans, Populations in the Northern Gulf of Mexico
Invasive Indo-Pacific red lionfish, Pterois volitans, were first reported in the northern Gulf of Mexico (nGOM) in summer 2010. To examine potential impacts on native reef fish communities, lionfish density and size distributions were estimated from fall 2010 to fall 2013 with a remotely operated vehicle at natural (n = 16) and artificial (n = 22) reef sites. Lionfish (n = 934) also were sample...
متن کاملWithin-colony feeding selectivity by a corallivorous reef fish: foraging to maximize reward?
Foraging theory predicts that individuals should choose a prey that maximizes energy rewards relative to the energy expended to access, capture, and consume the prey. However, the relative roles of differences in the nutritive value of foods and costs associated with differences in prey accessibility are not always clear. Coral-feeding fishes are known to be highly selective feeders on particul...
متن کاملWave energy and swimming performance shape coral reef fish assemblages.
Physical factors often have an overriding influence on the distribution patterns of organisms, and can ultimately shape the long-term structure of communities. Although distribution patterns in sessile marine organisms have frequently been attributed to functional characteristics interacting with wave-induced water motion, similar evidence for mobile organisms is lacking. Links between fin morp...
متن کامل